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Errorless reproduction of given pattern dynamics by means of cellular automata
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In this paper we propose the two methods to reproduce given binary pattern dynamics with cellular au-
tomata. The point is that one can easily find a sequence of rules or specified rules in two-state multineighbors
cellular automata, which enable an errorless description and reproduction of given multiple sequences of binary
patterns. Actual examples using computer experiments for one-dimensional bit-pattern data~digital sound
signals, multiple sequences of cycle patterns! are given. Noise robustness and the other important dynamical
properties of these methods are investigated from the perspective of ‘‘rule dynamics’’ and in comparison with
a recurrent neural network model, which enables us to embed given binary patterns as multiple attractors in the
form of fixed points or limit cycles.
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I. INTRODUCTION

Biological systems have been attracting a lot of inter
because of their excellent functions that work under vari
environments. Traditionally, the main methodologies for s
entifically approaching their mechanisms have been phys
chemistry, and so on. In contrast, however, the last few
cades have seen that new approaches appear associate
the remarkable development of computers and simula
methods. Furthermore, the discovery of chaotic dynamic
biological systems, including the brain, has produced a
impact and also has been attracting great interest from m
scientists with the question of ‘‘what is the role of chaos
biological systems?’’ However, the great complexity orig
nating from dynamics in systems with large but finite d
grees of freedom such as biological systems is still prev
ing us from understanding the scientific mechanisms of th
excellent information or control functions, in spite of muc
effort by ambitious researchers in a variety of scientific fie
@1–13#.

In these situations, we believe that chaotic dynamics, e
in systems with many degrees of freedom, could be ge
ated by a single or a sequence of certain simple determin
rules, as observed in systems with few degrees of freed
@7,8#. By virtue of this, one could gain a considerable und
standing of the dynamical mechanisms of their functioni
which could be applied to realizing complex controls
complex information processing via a certain simple r
@10–13#.

Based on these motivations, we focused on describing
reproducing high-dimensional chaotic dynamics by utilizi
a certain set of rules or a sequence of simple rules, wh
could be regarded as an inverse problem in nonlinear dyn
ics. Cellular automata~CA! is one such method and has be
intensively studied, for instance, in@7–9#. Recently, we fo-
cused on real digital sound data~spoken-word data and mu
sic data! as an example of chaotic dynamics, and have p
posed a method for describing them by rule dynamics
one-dimensional CA with the two states and three neighb
@14–16#. In particular, Ref.@16# had shown that, with the us
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of only two rules, perfectly reproducible coding of digita
sound data by CA rule dynamics is possible for a great d
of spoken-word data and music data formatted and used
standard compact disk. It should be noted that our cod
method is associated with data compression without any
of information.

In this paper, extending our viewpoint more generica
we report the dynamical properties produced by this met
in more detail, including a discovery that each rule seque
works as a generator of attractor dynamics for arbitra
given initial patterns, where the word ‘‘attractor’’ is used in
little nonconventional meaning which will be mentioned in
later section~Sec. II A!. Furthermore, we would like to pro
pose another method for reproducing multiple sequence
cycle patterns that are rather long data strings represente
bit patterns. We shall briefly investigate dynamical propert
and noise robustness, particularly in comparison with a
current neural network model.

II. DYNAMICAL PROPERTIES OF AN ERRORLESS
DESCRIPTION OF DIGITAL SOUND DATA

BY ONLY TWO CA RULES

A. Errorless reproduction of sound data

Let us briefly introduce CA and our method that consid
one-dimensional two-state–three-neighbor cellular autom
~abbreviated as 1-2-3 CA hereafter!, where each cell is ar-
ranged on a one-dimensional chain. We employ variableai

t

~50 or 1,i 51, . . . ,N) which indicate the state of thei th site
in chain at time stept. The state of thei th site at time step
t11, ai

t11 is determined by the states of itself and those
the neighboring two sites at time stept, so that the updating
rule can be represented as

ai
t115 f ~ai 21

t ,ai
t ,ai 11

t !, ~1!

where the functionf (•) is called a transition function, which
updates the state ofai

t to ai
t11. To specify updating func-

tions, we introduce the following abbreviations:
©2003 The American Physical Society07-1
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f ~0,0,0!5 f 0 , f ~0,0,1!5 f 1 ,

f ~0,1,0!5 f 2 , f ~0,1,1!5 f 3 ,

f ~1,0,0!5 f 4 , f ~1,0,1!5 f 5 , ~2!

f ~1,1,0!5 f 6 , f ~1,1,1!5 f 7 ,

wheref i50 or 1 (i 50, . . .,7). By choosing eachf i to be 0
or 1, we can determine a certain specified rule. If we ass
the two states of each cell to 0 or 1, respectively, the ti
development of a certain initial state in the 1-2-3 CA give
sequence of one-dimensional bit patterns consisting of 0
@19#. By introducing a number asn520f 0121f 1122f 2
123f 3124f 4125f 5126f 6127f 7 , one can name eachn
‘‘the specified rule number’’ from 0 to 255~totally 285256
rules in 1-2-3 CA!. Now, let us briefly present our basic ide
for describing digital sound data by rule dynamics of t
1-2-3 CA @14#. In modern technologies, analog signals a
often recorded as digital signals both in time and amplitu
following sampling and analog-digital transformation. F
instance, in the standard musical data format of CDs~com-
pact discs!, signals are sampled at a frequency of 44.1 k
and 16-bits amplitude quantization. An example is shown
Fig. 1. Digital sound data are also represented as a sequ
of binary pattern strings consisting of 16 bits, which can
regarded as the time development of a corresponding 1
CA consisting of 16 cells.

The problem is how to determine a rule sequence of
1-2-3 CA that can reproduce the sequence of 16 bit patt
that describes the digital sound signals.

In the previous papers@14,15#, all 256 rules were applied
once to each successive step and the best rule to repro
original binary data pattern was chosen. In most of the st
however, original data cannot be reproduced without a
tain error tolerance. Thus, the second proposed metho
‘‘repeated applications of rules’’ and we successfully fou
that errorless reproduction of original binary patterns is p
sible with only two rules of 1-2-3 CA, for instance,~51, 240!
or ~90, 180!, and so on. We had shown that the

FIG. 1. An example of sound data taken from music~upper! and
16 bit-pattern sequences~lower! which correspond to digital data
sampled and quantized according to the standard musical data
mat of CDs~compact discs!, i.e., a frequency of 44.1 kHz and 1
bits, so that the horizontal axis is in the unit of time step 1/4410
and the vertical axis is in the dimensionless scale of 216 with the
maximum amplitude unit.
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are many cases that exhibit not only perfect reproduction,
also result in data compression~see@16#!. An example of a
sequence of patterns that describes a sound signal wit
error is shown in Fig. 2~c! ~only ;50 steps for saving spac
of showing!.

Furthermore, we have discovered that the rule seque
does not care for the existence of noise. For instance
initial condition including one-bit noise surely converg
into the original pattern sequence by applying the rule
quence~see Fig. 3!. Even starting from arbitrary given initia
patterns, the sequence of original patterns can be recov
by applying the sequence of two rules. This means that
sequence of rules for reproducing given pattern dynam
works as a generator of ‘‘attractor dynamics.’’ One wou
guess that, in a conventional interpretation, ‘‘attractor’’
meaningful only when phenomena occur in autonomo
systems—i.e., systems in which the evolution rules do
change as time goes on. In the present case, although
updating of states is associated with changing rules, ther
the remarkable dynamical property that dynamics remo
noise and results in converging into a specified pattern
namics. It could be interpreted as ‘‘attractor dynamics’’
our work and we use it in later descriptions.

B. Attractor dynamics generated by sequences of two rules
to give perfect reproduction of sound data

As noted in the previous section, one-bit differen
~noise! expands slightly during the initial stage of updatin
resulting in the pattern dynamics becoming slightly differe
from the original pattern sequence. However, in rather sh
time steps, it returns to the original pattern sequence.

or-

s

FIG. 2. Left: pattern dynamics of 16 cells starting from a ce
tain initial condition where the rule number is 90. Middle: the sam
initial condition but the rule number is 180. Right: an actual e
ample of sound data description by 1-2-3 CA, where only the t
rules, 90 and 180, are used. The arrows indicate the 16-bit patt
corresponding to the sound data, where the intermediate pattern
these produced by the two-rule sequence, which perfectly re
duces the original sound data by sequentially applying the
rules. It should be noted that gray cells and black cells corresp
to the rule numbers, 90~gray! and 180~black!, respectively.
7-2
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have confirmed by the computer experiment the fact t
even when all of 216 patterns are taken as initial condition
they all converge to the pattern sequence of the corresp
ing sound data, so that the rule sequence only works as
strong attractor in the state space. This is one of the cruc
important points of the present paper.

Now, to study a little more in detail how the convergin
dynamics recover the original pattern sequence, let us sh
in Fig. 4, the distributions of step numbers until the updat
of bit patterns returns the original one. Figure 5 shows

FIG. 3. ~a! The original pattern sequence that describes
sound signal perfectly, where the data are taken from 1–50 s
The gray stripe corresponds to the sound amplitude, while the o
patterns are intermediate ones generated by multiple applicatio
the two rules, 90 and 180.~b! The original pattern sequence from
1143 steps to 1193 steps.~c! The pattern sequence starting fro
an initial pattern having noise, in the case of~a!. Note that one-bit
difference extends and the pattern dynamics becomes totally d
ent to ~a!. ~d! The same pattern as~c!, where the cells having
different states to the original pattern sequence are shown in
color ~neglect this figure if the paper is published in noncolor pri
ing!. ~e! The pattern sequence starting from the same initial con
tion as~c!, where the steps from 1143–1193 are shown. It is imp
tant to note that the differences vanish, which means that the n
vanishes and the updated patterns return to the original bit patt

FIG. 4. Distribution of the step numbers until the updating
patterns converges with the original sound data patterns, wher
rule sequence of two rules, in this case, 90 and 180, are applie
03670
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distributions of amplitude values that are generated dur
the update of bit patterns until they return the correspond
sound data patterns, where in the latter, bit patterns are
verted to actual integer values represented by 16-bits at e
time step.

From these two figures and our simulation results, we
gain an insight into the process of attracting dynamics g
erated by the rule sequences corresponding to each s
signal.

~1! In most cases, the number of steps taken until the s
updating converges to the recorded signals is, at most, f
several hundred to a few thousand. Thus the convergenc
quite rapid in the sense that the length of each pattern
quence obtained from only a 1 s sound signal consists o
44 100 steps in the present experiment. This means tha
attracting force generated by the rule sequence is q
strong.

~2! From the rough evaluation of Fig. 5, one can obse
that there are not many paths to the attractors because
density of points quickly decreases as the patterns are
dated. This means that the 216 initial patterns quickly con-
verge during updating within a rather small number of tim
steps.

~3! The statement of~2! is also confirmed by the fact tha
the distribution of step numbers until the updated patte
return the corresponding attractor~the sound signal! is con-
siderably localized to a small number of steps. This me
that updated patterns quickly converge into the same
quence of patterns.

III. ERRORLESS REPRODUCTION OF MULTIPLE
CYCLIC BINARY PATTERN SEQUENCES
BY TWO-STATE MANY-NEIGHBORS CA

A. Totalistic rule and errorless description in symmetric
neighboring cell configuration

In this section we consider the other method of describ
pattern dynamics that consist of rather long data strings
each time step. These data are observed in many field
science and/or engineering. For instance, two-dimensio
video images are often discretized by an appropriate s
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FIG. 5. Distribution of amplitude until the updating of pattern
converges with the original sound data patterns, where the rule
quence of two rules, in this case, 90 and 180, are applied.
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pling in the time domain and one sampled frame image
decomposed into one-dimensional image signals by ra
scanning. Furthermore, if image signals are digitized by s
pling in the scanning time domain and amplitude quanti
tion, then the final data are a sequence of long bit patte
Long binary data strings are, however, difficult to descr
and reproduce by 1-2-3 CA because they vary widely in ti
development of various local patterns, which could give c
tradictory updating rules when described with 1-2-3 C
even if the rules are repeatedly applied. Thus, apart fr
1-2-3 CA used for the sound data case, we would like
propose a new alternative method to reproduce arbitra
given binary data strings that also use the other CA rule.
essential point is to introduce totalistic rules with ma
neighbors. This is a strong contrast to a recurrent neural
work model~NN! which enables us to embed given bina
patterns as multiple attractors in the form of fixed points
limit cycles, i.e., patterns are recorded in an extended sta
real numbers or, in the other words, real values of connec
strength between neurons, which are called ‘‘synaptic c
nection strength.’’ This contrasting point was discussed
Nagaiet al., who also proved the dynamical equivalency b
tween CA and NN@17,18#. In comparison with NN, the de
scription by CA is quite simple but has to sacrifice retriev
performance, namely ‘‘association ability or noise robu
ness.’’ Rules of CA determine the state of each cell at
next time step depending on the present state of neighbo
cells, so that even a one-bit difference between them co

FIG. 6. Pattern sequences that are used in this paper to b
produced perfectly by certain totalistic rules proposed in this pa
The patterns with strong structures have been used in the work
one of the authors@12# who has extensively studied comple
dynamics of NN, including chaos.

TABLE I. Totalistic rule in CA. If one employsM-neighboring
cells asG when updating patterns, thenM11 cases can occur in
( j PGaj

t , and for each case the next state can take either 0 or

(
jPG

aj
T 0 1 !!¯!! M

fS(
jPG

aj
tD 0 or 1 0 or 1 ¯ 0 or 1
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lead to totally different states from the desired perfect patt
sequence. We will discuss the noise robustness of
method later in this section, but let us first explain our n
method in a little more detail.

The point is to employ an optimized totalistic rule fo
each cell. A totalistic rule is a rule for deciding the state of
cell at the next time step, depending on the number of c
that have the state 1~or 0! in certain specified neighboring
cells where the configuration of neighboring cells can
chosen, if one wants, to optimize or realize the errorless
scription of data, as shown in the later sections. In t
scheme, the totalistic rule of this cell is written as

ai
t115 f i S (

j PGi ~M !
aj

t D , ~3!

with respect to thei th cell. Here,Gi(M ) represents a set o
cells with a given spatial configuration includingM cells ~M:
natural integer number!, and f i is the function that takes 0 o
1 depending on the value( j PGi (M )aj

t . Thus one can know

the total number of cases to determine the values off i are
2M11. This is illustrated in Table I. Now, let us show a
example that explains the conditions employed in this pa
in a little more detail. We prepared the 30 patterns shown
Fig. 6, with each pattern consisting of 400 pixels.

We intend to reproduce the periodic state sequences
sisting of five cycles, each of which contains the sequenc
the six patterns shown in each row of Fig. 6. This means
once any of the patterns are given, the next pattern in
cycle should be reproduced by applying the specified rule~s!,
so that one has to find the rule~s! to describe the 635530
cases of a two-pattern step. As stated above, each patte
represented by a 400-bit~cell! string with an appropriate ras
ter scanning. Figure 7 shows the periodic bit pattern
quence for the first cycle in Fig. 6.

re-
r.
of

FIG. 7. Periodic pattern dynamics when 203205400 pixels are
reconfigured into one string by raster scanning, where the up
most periodic cycle is shown in this figure.

FIG. 8. The totalistic rule for each cell used in perfect reprod
tion of pattern sequences shown in Fig. 6. The rules for only
initial pixels are shown. White cells mean that one should take
( j PGaj

t falls into this case and black cells, and should take 0 i
falls into this case. Gray cells mean that in this description, no ca
of reproducing the given pattern sequences shown in Fig. 6 oc
7-4
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These cycle patterns were chosen to compare dynam
properties occurring in NN, which were intensively inves
gated in Refs.@10–12#. Now, for each cell, one should searc
a specified totalistic rule by the following algorithm.

~i! Start from one cell and decide the neighboring num
and the configuration of neighbor cells, for instance,
neighbor number is 3 and the configuration is taken as
cell itself and the neighboring cells on both the right and l
sides. In taking a symmetric neighboring configuration,
instancer neighbors on both the right and left sides, one h
R52r 11 neighboring cells and has to sum up the 2r 11
cell states for the 30 cases of the given pattern steps.

~ii ! To specify the totalistic rule which reproduces the
cases of two-pattern steps without error.

~iii ! If errorless reproduction is not possible, then increa
the number of neighboring cells and, if one wants to op
mize the method, change the configuration, continuing u
the errorless reproduction is obtained.

~iv! The procedure from~i! to ~iv! should be done for al
cells, which in the present simulation is 400 cells.

Figures 8 and 9 shows one of the rules determined by
above algorithm with a symmetric configuration of cells.
the figure it should be noted that most of the 2r 11 cases are
not used because the total summation of cell states und
given number and configuration of neighboring cells in t
30 patterns does not exhaust all cases, due to certain pa
structures as observed in Fig. 6. The results of comp
experiments are shown in Table II~the symmetric case!.

Now, let us investigate the robustness of our method
noise. An important point is that if noise is introduced in
initial pattern or during updating of patterns, unused case
( j PGaj in perfect pattern sequences occur due to the e
tence of noise. Thus, one needs to determine the rules, w
states whether 1 or 0 should be employed in those cases
instance, there areR115(2r 11)11 cases of( j PGaj for
determining each cell state at the next step, where most c
do not occur. There would be many choices because a l
number of cases inR11 are not used. In the present pap

FIG. 9. The same totalistic rule as shown in Fig. 8, where
cells shown in gray are all interpolated to be 1 or 0.

TABLE II. Maximum, minimum, and averaged neighborin
numbers in an errorless description with totalistic rules for each
for the multiple cyclic-pattern sequences shown in Fig. 6.

Max Min Average

Method 1 627 1 178.06
Method 2 129 1 52.19
03670
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we employ the following interpolated extension of totalis
rules. We propose an idea that used cases~1 or 0 at certain
specified cells! should be extended to the unused cases u
they are fully interpolated, then any of theR11 cases in
( j PGaj can be used, even in the existence of noise dur
updating. Figure 10 shows an initial pattern with five pixe
inverted from11(0)→0(11). One can observe that pas
ing time results in differences to the original sequence
patterns, but similar patterns are produced. It should be n
that five-pixels inversion leads not to random patterns bu
itinerant orbits that are quite close to the cycles we wante
describe. This simulation result suggests that the rules co
derive new dynamics without the complex mechanism tha
necessary for, say, neurodynamics. However, a large de
tion from the original patterns may occur, thus this meth
would be a weak neural network model with respect to no
removal.

B. Optimized errorless description by asymmetric neighboring
cell configuration

The problem with the method employed in the previo
section is that one needs considerably large numbers

FIG. 11. The totalistic rule used to perfectly reproduce patt
sequences shown in Fig. 6, where the rules are optimized
respect to the configuration of cells~G! to evaluate( j PGaj . The
rules for only the 40 initial pixels are shown. White cells mean th
one should take 1 if( j PGaj

t falls into this case, and black cell
mean that one should take 0. Gray cells mean that no case o
producing the given pattern sequences shown in Fig. 6 occur
this description.

e

ll

FIG. 10. Updated patterns that start from an initial condition t
includes noise~five pixels inverted!. It should be noted that the
noise considerably deforms the updated pattern from the orig
ones. However, they are not random patterns and appear to be
erant in the spaces near the original patterns.
7-5



rip
e
-

ll
r

io
ur
e
ex
4
f

do
al

d
th

oy
le

e
im
w
tio
he
1

ame

rges
ter-

s of
en-

s. In
dy-
ent
ions
an
ly
re-
the
f

mi-
ata

a

do
se

the
r t
e

hat

t the
ttrac-

g
add-
r-

TAMURA, KUROIWA, AND NARA PHYSICAL REVIEW E 68, 036707 ~2003!
neighboring cells to obtain a perfectly reproducible desc
tion. To improve this difficulty, we propose to optimize th
configuration of neighboring cells. That is, while in the sym
metric case, one takes 2r 11 neighboring cells as the ce
itself and r cells on both the right and left sides, in ou
improved method, one can take 2r 11 cell configuration
asymmetrically, namely an idea to make the configurat
adjustable. When we introduced this optimization proced
in the proposed algorithm, great improvement was obtain
as shown in Table II as Method 2. Figure 11 shows an
ample of optimized cases, where only the rules for the
initial pixels are shown. The same experiments are done
the other patterns, which are other face patterns and ran
patterns, to prove that our improved method is generic
effective.

How is the noise robustness of this method improve
The computer experiment shown in Fig. 12 represents
noise robustness is also improved.

It should be noted that, in this figure, we did not empl
the interpolation method for unused cases of totalistic ru
and, if ( j PGaj takes a value that is not assigned, we us
method in which such cells keep the states in the next t
step. To evaluate the effect of our interpolation method,
now employ the same method stated in the previous sec
The interpolated totalistic rule is shown in Fig. 13, while t
results of the computer experiments are shown in Fig.

FIG. 12. Updated patterns starting from an initial condition th
includes the noise~five pixels inverted!, where the initial state is the
same as in the case of Fig. 10. It should be noted that the noise
not extend and the updated patterns are almost the same as tho
want to reproduce.

FIG. 13. The totalistic rule in the optimized case, where
unused cases are all interpolated to be 1 or 0. Only the rules fo
40 initial pixels are shown. White cells mean that one should tak
if ( j PGaj

t falls into this case, and black cells should take 0.
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where the noise number and the configuration are the s
as in the previous cases.

One can observe that the updating of patterns conve
to the original pattern sequence. This means that this in
polation method generates an attractor dynamics.

C. Noise robustness and transitions between attractor patterns
due to rule sequences

In this section we have evaluated the noise robustnes
dynamics described by subsequent application of the
coded sequence of rules via further computer experiment
processing numerical calculations, we have found a new
namical property, i.e., there are transitions between differ
attractor patterns depending on the number and the posit
of bit noises. An example is shown in Fig. 15, where
initial pattern, including a considerable number of random
configured bit noises, does not make the initial patterns
cover the pattern before adding noise, but converges into
cyclic patterns with slightly different bits or into the one o
different perfect cyclic patterns. To investigate these dyna
cal properties more accurately, the following statistical d
are evaluated by numerical calculations, i.e.:

t

es
we

he
1

FIG. 14. Updated patterns that start from an initial condition t
includes the noise~five pixels inverted!, where the initial state is the
same as the cases of Figs. 10 and 12. It should be noted tha
noise vanishes, meaning that the rule works as a generator of a
tor dynamics.

FIG. 15. The two examples in which an initial pattern, includin
a certain amount of noise, does not recover the pattern before
ing noise but converges into the cyclic patterns with slightly diffe
ent bits~upper! or into one of perfect cyclic patterns~lower!.
7-6
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~1! To prepare the 10 000 initial patterns includin
K-noise bits (K52 – 50) with respect to one of the origina
perfect patterns.

~2! To subsequently apply the 10 000 initial patterns to
encoded sequence of rules for sufficiently long time st
and to confirm that the passing time has converged into
clic sequences.

~3! To specify the converged perfect periodic patterns
which they belong in Fig. 6 and to calculate the normaliz
distribution with respect to the 10 000 samples.

An example is shown in Fig. 16. One can observe that
rate of initial patterns which recover the perfect original p
terns decreases and the other initial patterns jump to
other perfect cycles as noise increases. This indicates tha
encoded sequence of rules is not very robust to noise,
does generate a new dynamical property. This pattern tra
tion is rather generic because we have evaluated the s
quantities for all of the encoded sequences, and severa
sults are shown in Fig. 17. These results relate to cha
dynamics shown by one of the authors in Ref.@12#.

IV. CONCLUDING REMARKS

Let us state a summary of our work.
~1! Rule dynamics obtained in perfectly reproduced di

tal sound signals by 1-2-3 CA make attractor dynamics

FIG. 16. Statistical data for the 10 000 initial patterns includi
noise bits from 2 – 50. Note that the units and the scales are
same as for the previous figures.
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which any initial pattern consisting of 16 bits is pulled in
the original pattern dynamics.

~2! Rule dynamics consist of sequences of only two ru
in 1-2-3 CA; these two rules belong to the two classes nam
by Wolfram, Class2 and Class3, namely the class givin
limit cycle and the class giving a chaotic state. This mea
that a sound signal is standing on the delicate point betw
‘‘convergence’’ and ‘‘divergence’’ dynamics.

~3! Perfect description of arbitrarily given pattern dynam
ics by CA rules has a great advantage in that it needs on
small amount of information to describe and record.

~4! Although this coding is rather weak for noise, it ma
present other possibilities, such as producing new inform
tion for new functions such as memory synthesis, and so
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